Building Change Detection Improvement Using Topographic Correction Models

نویسندگان

  • Shabnam Jabari
  • Yun Zhang
چکیده

In the change detection application of remote sensing, commonly the variation in the brightness values of the pixels/objects in bi-temporal image is used as an indicator for detecting changes. However, there exist effects, other than a change in the objects that can cause variations in the brightness values. One of the effects is the illumination difference on steep surfaces mainly steeproofs of houses in very high resolution images, specifically in off-nadir images. This can introduce the problem of false change detection results. This problem becomes more serious in images with different viewangles. In this study, we propose a methodology to improve the building change detection accuracy using imagery taken under different illumination conditions and different view-angles. This is done by using the Patch-Wise Co-Registration (PWCR) method to overcome the misregistration problem caused by view-angle difference and applying Topographic Correction (TC) methods on pixel intensities to attenuate the effect of illumination angle variation on the building roofs. To select a proper TC method, four of the most widely used correction methods, namely C-correction, Minnaert, Enhanced Minnaert (for slope), and Cosine Correction are evaluated in this study. The results proved that the proposed methodology is capable to improve the change detection accuracy. Specifically, the correction using the C-correction and Enhanced Minnaert improved the change detection accuracy by around 35% in an area with a large number of steep-roof houses imaged under various solar angles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation and Comparison of Topographic Correction Models Is Applied on the Series Landsat Images Using Spectrometery Data

The effect of topography on the radiance record in satellite image, probably reduce the accuracy of algorithem impliementation on the images . Therefore, to reduce the effect of topography, various correction models based on interaction between light and object needs to be defined. This research introduces lombertin correction model (Cosine model) and non_lombertin correction model (mineart and...

متن کامل

Building Change Detection from Lidar Point Cloud Data Based on Connected Component Analysis

Building data are one of the important data types in a topographic database. Building change detection after a period of time is necessary for many applications, such as identification of informal settlements. Based on the detected changes, the database has to be updated to ensure its usefulness. This paper proposes an improved building detection technique, which is a prerequisite for many buil...

متن کامل

A sun–crown–sensor model and adapted C-correction logic for topographic correction of high resolution forest imagery

Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun–canopy–sensor (SCS) model significantly improved over those based on the sun–terrain–sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees....

متن کامل

Effective Generation and Update of a Building Map Database Through Automatic Building Change Detection from LiDAR Point Cloud Data

Periodic building change detection is important for many applications, including disaster management. Building map databases need to be updated based on detected changes so as to ensure their currency and usefulness. This paper first presents a graphical user interface (GUI) developed to support the creation of a building database from building footprints automatically extracted from LiDAR (lig...

متن کامل

Does Topographic Normalization of Landsat Images Improve Fractional Tree Cover Mapping in Tropical Mountains?

Fractional tree cover (Fcover) is an important biophysical variable for measuring forest degradation and characterizing land cover. Recently, atmospherically corrected Landsat data have become available, providing opportunities for high-resolution mapping of forest attributes at global-scale. However, topographic correction is a pre-processing step that remains to be addressed. While several me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017